Capacitance spectroscopy and density functional theory.
نویسندگان
چکیده
The redox capacitance and its associated quantum component arising from the charging of molecular levels from coupled metallic states are resolvable and quantified experimentally by capacitance spectroscopy (CS). Herein we relate both this N-electron system capacitance directly to conceptual chemistry density functional theory (DFT) and the charging magnitude and associated quantum capacitive term (which resemble those introduced by Serge Luryi) to the Kohn-Sham frontier molecular orbital associated energies for isolated molecules and DFT calculated redox density of states (DOS) at metal-molecule junctions for a single molecule and molecular films confined at metallic interfaces. DFT computational analyses reveal the orbital energetic alignment between the iron redox site and those states in the metal specifically when metal-molecule junctions are formed. The impact of this on the resolved chemical softness and capacitance is also revealed. These analyses, additionally, are shown to numerically resolve redox capacitance in a manner that accurately reproduces experimental observations for molecular films. These observations both theoretically underpin CS and provide guidance on its optimised application in interfacial analyses involving molecular electrochemistry and derived sensory applications.
منابع مشابه
بررسی کارایی گرافن با نقص ساختاری و عاملدار شده با C6H4 به عنوان ماده فعال الکترودی در ابرخازنها
In this study, quantum capacitance of graphene-based electrodes is evaluated using Density Functional Theory (DFT) calculations. The obtained results showed that quantum capacitance of graphene-based supercapacitors could be significantly improved by existence of structural defects on the graphene sheets at sufficiently high concentrations because of creating impure states resulted from carbon ...
متن کاملA hybrid density functional theory (DFT) and ab initio study of α-Acyloxycarboxamides Derived from Indane-1, 2, 3-trione
α-acyloxycarboxamides are synthesized from three component Passerini reaction between indane-1,2,3-trione, isocyanides, and thiophenecarboxylic acids in quantitative yields. The structures of the final products were confirmed by IR, 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. The B3LYP/HF calculations for computation of 1H an...
متن کاملDefects and Nanocrystals Generated by Si Implantation into a-SiO2
Electrical charge-trapping characteristics have been studied in thermal oxides that were implanted with Si, experimentally using electron spin resonance (ESR), capacitance versus voltage (CV) measurements, transmission electron microscopy (TEM), atomic force microscopy (AFM), and theoretically with Density Functional Theory (DFT) using plane waves. Our study examines possible defect structures ...
متن کاملAddition Energy Spectra of Semiconductor Quantum Dots
Advances in the semiconductor technologies allow the realization of quantum dot structure in which a finite number of electrons are confined by an artificial potentials [1–3]. The number of electrons in a quantum dot, denoted N , which can also be controlled experimentally, affects many physical properties of the quantum dot. By changing the quantum dot size and the number of electrons, far-inf...
متن کاملFirst step to investigate nature of electronic states and transport in flower-like MoS2: Combining experimental studies with computational calculations
In the present paper, the nature of electronic states and transport properties of nanostructured flower-like molybdenum disulphide grown by hydrothermal route has been studied. The band structure, electronic nature of charge, thermodynamics and the limit of phonon scattering through density functional theory (DFT) has also been studied. The band tail states, dynamics of trap states and transpor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 14 شماره
صفحات -
تاریخ انتشار 2015